Sejarahdan Definisi Bilangan Prima. Bilangan prima adalah sebuah bilangan asli lebih dari 1, yang hanya memiliki dua faktor, yaitu 1 dan bilangan itu sendiri. Sederhananya, bilangan prima adalah bilangan yang hanya bisa dibagi 1 dan bilangan itu sendiri. Contoh, 10 bilangan prima pertama adalah 2, 3, 5, 7, 11, 13, 17, 19, 23, dan 29. PembahasanFaktorisasi Prima Tuliskan bilangan 24 , 52 , dan 100 dalam faktor prima sebagai berikut Dari pohon faktor di atas, dapat ditentukan 24 = 2 × 2 × 2 × 3 52 = 2 × 2 × 13 100 = 2 × 2 × 5 × 5 Faktor prima persekutuan = 2 × 2 Sehingga FPB = 2 × 2 = 4 Tabel Bilangan prima yang dapat membagi 24 , 52 , dan 100 secara bersama-sama adalah 2 dan 2 .Sehingga FPB = 2 × 2 = 4 Pembagian Euclid 100 dibagi 24 → sisa 4 24 dibagi 4 → sisa 0 berhenti dan 52 dibagi 24 → sisa 4 24 dibagi 4 → sisa 0 berhenti Sehingga FPB = 4 Jadi, FPB dari 24 , 52 , dan 100 adalah 4 . Faktorisasi Prima Tuliskan bilangan dan dalam faktor prima sebagai berikut Dari pohon faktor di atas, dapat ditentukan Sehingga Tabel Bilangan prima yang dapat membagi dan secara bersama-sama adalah dan . Sehingga Pembagian Euclid dan Sehingga Jadi, FPB dari dan adalah .

Buatlah cara tabel untuk mencari faktorisasi prima dari bilangan yang dicari FPB-nya. • Beri tanda faktor prima yang sama. Contoh. a. Tentukan FPB dari bilangan 21 dan 35. 21 35 3 7 5 5 7 1 7 1 1. FPB = 3. b. Tentukan FPB dari bilangan 36 dan 54 c. 36 54 2 18 27 2 9 27 3 3 9 3 1 3 3 1 1

Pada pembelajaran matematika kelas IV sekolah dasar salah satu materi yang dibahas adalah KPK dan FPB suatu bilangan. Apa itu KPK dan FPB ? Kelipatan persekutuan adalah kelipatan yang sama dari dua bilangan atau lebih, sedangkan Faktor persekutuan adalah faktor yang sama dari dua bilangan atau lebih. KPK dan FPB dapat dicari menggunakan faktorisasi prima dari bilangan-bilangan tersebut. Faktorisasi prima adalah perkalian bilangan-bilangan prima dari suatu bilangan. Faktorisasi prima dapat diperoleh menggunakan pohon Menentukan KPK Dua Bilangan atau LebihKPK atau Kelipatan Persekutuan Terkecil adalah bilangan bulat positif dengan nilai terkecil yang bisa habis bila dibagi dengan kedua bilangan tersebut Untuk menentukan KPK dua buah bilangan dapat dilakukan dengan menggunakan faktorisasi prima dan kelipatan bilangan. Perhatikan beberapa contoh berikut ini1. Menggunakan Kelipatan Kedua BilanganKelipatan bilangan adalah bilangan-bilangan yang merupakan hasil kali bilangan tersebut dengan bilangan bulat positif. Kelipatan bilangan dapat digunakan untuk menentukan KPK dua bilangan atau lebih. Perhatikan contoh soal berikut ini !Berapakah KPK dari 4 dan 6?PenyelesaianKelipatan 4 adalah 4, 8, 12, 16, 20, 24, 28, 32, 40, …Kelipatan 6 adalah 6, 12, 18, 24, 30, 36, …Kelipatan persekutuan dari 4 dan 6 adalah 12, 24, …Jadi, KPK dari 4 dan 6 adalah Menggunakan Pohon FaktorPohon faktor merupakan deretan pembagian yang turun kebawah dengan menggunakan pembagian menggunakan bilangan prima. Cara menentukan KPK dua bilangan atau lebih dapat dilakukan dengan langkah-langkah sebagai berikut Tulislah bilangan-bilangan tersebut dalam bentuk perkalian faktor semua faktor yang sama dari bilangan-bilangan faktor yang sama tersebut memiliki pangkat yang berbeda, maka ambil faktor yang pangkatnya KPK dari 4 dan 6?PenyelesaianFaktorisasi prima dari 4 = 2²Faktorisasi prima dari 6 = 2 × 3Jadi KPK 4 dan 6 adalah = 2² x 3 = 4 x 3 = 12B. Menentukan FPB Dua Bilangan atau Lebih1. Menggunakan Faktor PersekutuamFaktor persekutuan merupakan bilangan faktor yang sama dari dua bilangan atau lebih. FPB diambil dari faktor yang memiliki nilai terbesar.. Perhatkan contoh soal berikut ini!Carilah FPB dari 6, 9, dan 18 ...PembahasanFaktor dari 6 adalah = {1, 2, 3, 6}Faktor dari 9 adalah = {1, 2, 3, 9}Faktor dari 18 adalah = {1, 2, 3, 6, 9, 18}Faktor persekutuan dari ketiga bilangan tersebut adalah 1, 2, 3Nilai terbesar dari faktor tersebut adalah 3 maka FPB dari 6, 9, dan 18 adalah 32. Menggunakan Pohon FaktorPohon faktor merupakan deretan pembagian yang turun kebawah dengan menggunakan pembagian menggunakan bilangan prima. Cara menentukan FPB menggunakan phon faktor adalah sebagai berikut !Tulislah bilangan-bilangan tersebut ke dalam bentuk perkalian faktor itu ambillah faktor yang sama dari bilangan-bilangan faktor yang sama tersebut memiliki pangkat yang berbeda, maka ambillah faktor yang memiliki nilai pangkat contoh soal berikut ini !Tentukan FPB dari 18 dan 24Pembahasan Faktor 18 = 2 x 3 x 3 = 2 x 3²Faktor 24 = 2 x 2 x 2 x 3 = 2³ x 3FPB = 2 x 3 = 6Jadi FPB dari 18 dan 24 adalah 6Ayo Mencoba1. Tentukan pohon faktor setiap pasangan bilangan 6 dan 9b. 9 dan 12c. 20 dan 30d. 32 dan 48e. 12 dan 182. Tentukan KPK dua bilangan berikut dengan menggunakan faktorisasi 10 dan 12 Faktorisasi prima dari 10 = 2 × 5Faktorisasi prima dari 12 = 2² × 3Maka KPKnya = 2² x 3 x 5 = 4 x 3 x 5 = 60b. 15 dan 20Faktorisasi prima dari 15 = 3 × 5Faktorisasi prima dari 20 = 2² x 5Maka KPKnya = 2² × 3 × 5 = 4 × 3 × 5 = 60e. 18 dan 20Faktorisasi prima dari 18 = 2 x 3²Faktorisasi prima dari 20 = 2² x 5Maka KPKnya = 2² x 3² x 5 = 4 × 9 × 5 = 180d. 42 dan 54Faktorisasi prima dari 42 = 2 x 3 × 7Faktorisasi prima dari 54 = 2 x 3³Maka KPKnya = 2 x 3³ x 7 = 2 × 27 × 7 = 378e. 38 dan 40Faktorisasi prima dari 38 = 2 x 19Faktorisasi prima dari 40 = 2³ × 5Maka KPKnya = 2³ × 5 × 19 = 8 × 5 × 19 = 7603. Tentukan KPK tiga bilangan berikut dengan menggunakan faktorisasi 6, 8 dan 9Faktorisasi prima 6 = 2 × 38 = 2³9 = 3²KPK = 2³ × 3² = 8 × 9 = 72Jadi KPK dari bilangan 6, 8 , dan 9 adalah 9, 10 dan 12Faktorisasi prima 9 = 3²10 = 2 × 512 = 2² × 3KPK = 2² × 3² × 5 = 4 × 9 × 5 = 180Jadi KPK dari bilangan 9, 10, dan 12 adalah 12, 16 dan 18Faktorisasi prima 12 = 2² × 316 = 2⁴18 = 2 × 3²KPK = 2⁴ × 3² = 16 × 9 = 144Jadi KPK dari bilangan 12, 16, dan 18 adalah 15, 20 dan 30Faktorisasi prima 15 = 3 × 520 = 2² × 518 = 2 × 3 × 5KPK = 2² × 3 × 5 = 4 × 3 × 5 = 60Jadi KPK dari bilangan 15, 20, dan 30 adalah 32, 36 dan 48Faktorisasi prima 32 = 2⁵36 = 2² × 3²48 = 2⁴ × 3KPK = 2⁵ × 3² = 32 × 9 = 288Jadi KPK dari bilangan 32, 36, dan 48 adalah Menentukan FPB Dua BilanganFaktor persekutuan adalah faktor yang sama dari dua bilangan atau Mencoba1. Tentukan FPB dua bilangan berikut dengan menggunakan faktor 6 dan 9Faktor 6 = 1, 2, 3, 6Faktor 9 = 1, 3, 9Faktor persekutuan dari 6 dan 9 = 1 , dan 3FPB dari 6 dan 9 = 3b. 9 dan 12Faktor 9 = 1, 3, 9Faktor 12 = 1, 2, 3, 4, 6, 12Faktor persekutuan dari 9 dan 12 = 1 , dan 3FPB dari 9 dan 12 = 3c. 12 dan 18Faktor 12 = 1, 2, 3, 4, 6, 12Faktor 18 = 1, 2, 3, 6, 9, 18Faktor persekutuan dari 12 dan 18 = 1, 2 , 3, dan 6FPB dari 12 dan 18 = 6d. 20 dan 30Faktor 20 = 1, 2, 4, 5, 10, 20Faktor 30 = 1, 2, 3, 5, 6, 10, 15, 30Faktor persekutuan dari 20 dan 30 = 1, 2, 5, dan 10FPB dari 20 dan 30 = 10e. 32 dan 48Faktor 32 = 1, 2, 4, 8, 16, 32Faktor 48 = 1, 2, 3, 4, 6, 8, 12, 16, 24, 48Faktor persekutuan dari 32 dan 48 = 1, 2, 4 , 8, dan 16FPB dari 32 dan 48​ = 162. Tentukan FPB dua bilangan berikut dengan menggunakan faktorisasi 10 dan 12Faktorisasi 10 = 2 × 5Faktorisasi 12 = 2² × 3FPB ditentukan berdasarkan faktor prima yang sama dari kedua bilangan dengan pangkat FPB dari 10 dan 12 adalah 2b. 15 dan 20Faktorisasi 5 = 3 × 5Faktorisasi 20 = 2² × 5FPB ditentukan berdasarkan faktor prima yang sama dari kedua bilangan dengan pangkat FPB 15 dan 20 adalah 5c. 18 dan 20Faktorisasi 18 = 2 × 3²Faktorisasi 20 = 2² × 5FPB ditentukan berdasarkan faktor prima yang sama dari kedua bilangan dengan pangkat FPB 18 dan 20 adalah = 2d. 38 dan 40Faktorisasi 38 = 2 × 19Faktorisasi 40 = 2³ × 5FPB ditentukan berdasarkan faktor prima yang sama dari kedua bilangan dengan pangkat FPB dari 38 dan 40 adalah = 2e. 42 dan 54Faktorisasi 42 = 2 × 3 × 7Faktorisasi 54 = 2 × 3³FPB ditentukan berdasarkan faktor prima yang sama dari kedua bilangan dengan pangkat FPB dari 42 dan 54 adalah = 2 × 3 = 63. Tentukan FPB tiga bilangan berikut dengan menggunakan faktor 6, 8 dan 9Faktor 6 = 1, 2, 3, 6Faktor 8 = 1, 2, 4, 8Faktor 9 = 1, 3, 9Faktor persekutuan dari 6, 8 dan 9 = 1FPB dari 6, 8 dan 9 = 1b. 9, 10 dan 12Faktor 9 = 1, 3, 9Faktor 10 = 1, 2, 5, 10Faktor 12 = 1, 2, 3, 4, 6, 12Faktor persekutuan dari 9, 10 dan 12 = 1FPB dari 9, 10 dan 12 = 1c. 12, 16 dan 18Faktor 12 = 1, 2, 3, 4, 6, 12Faktor 16 = 1, 2, 4, 8, 16Faktor 18 = 1, 2, 3, 6, 9, 18Faktor persekutuan dari 12, 16 dan 18 = 1, 2FPB dari 12, 16 dan 18 = 2d. 15, 20 dan 30Faktor 15 = 1, 3, 5, 15Faktor 20 = 1, 2, 4, 5, 10, 20Faktor 30 = 1, 2, 3, 5, 6, 10, 15, 30Faktor persekutuan dari 15, 20 dan 30 = 1, 5FPB dari 15, 20 dan 30 = 5e. 32, 36 dan 48Faktor 32 = 1, 2, 4, 8, 16, 32Faktor 36 = 1, 2, 3, 4, 6, 9, 12, 18, 36Faktor 48 = 1, 2, 3, 4, 6, 8, 12, 16, 24, 48Faktor persekutuan dari 32, 36 dan 48 = 1, 2, 4FPB dari 32, 36 dan 48 = 4 Bilanganprima adalah bilangan bulat yang hanya bisa dibagi dengan bilangan 1 dan bilangan itu sendiri. Contohnya bilangan 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, dan seterusnya. Bilangan ini dapat digunakan untuk menentukan faktor prima dan faktorisasi prima dari suatu bilangan bulat. Faktor Prima dan Faktorisasi Prima BILANGAN PRIMA Bilangan prima adalah bilangan yang tepat memiliki dua faktor yaitu 1 dan bilangan itu sendiri. Semua anggota bilangan prima adalah bilangan ganjil kecuali 2. Contoh Bilangan Prima {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, …} Faktorisasi Prima adalah pembentukan suatu bilangan menjadi bentuk perkalian dimana faktornya merupakan bilangan prima. Cara mencari faktorisasi prima 1. Menggunakan Pohon Faktor a. Faktorisasi Prima dari 12 = 2 X 2 X 3 = $latex 2^{2}$ X 3 b. Faktorisasi Prima dari 30 = 2 X 3 X 5 c. Faktorisasi Prima dari 84 = 2 X 2 X 3 X 7 = $latex 2^{2}$ X 3 X 7 2. Menggunakan Tabel a. Faktorisasi Prima dari 24 = 2 X 2 X 2 X 3 = $latex 2^{3}$ X 3 b. 40 Faktorisasi Prima dari 40 = 2 X 2 X 2 X 5 = $latex 2^{3}$ X 5 c. Faktorisasi Prima dari 150 = 2 X 3 X 5 X 5 = 2 X 3 X $latex 5^{2}$ Latihan Carilah faktorisasi prima dengan dari bilangan-bilangan sebagai berikut 36 54 68 72 80 99 100 250 300 500 FAKTOR PERSEKUTUAN TERBESAR FPB FPB merupakan faktor paling besar dari gabungan beberapa bilangan Cara mencari FPB Menggunakan Himpunan Faktor Persekutuan Contoh 1 Tentukan FPB dari bilangan 18 dan 24 Faktor 18 = {1, 2, 3, 6, 9, 18} Faktor 24 = {1, 2, 3, 4, 6, 8, 12, 24} Faktor persekutuan dari 18 dan 24 = { 1, 2, 3, 6} FPB dari 18 dan 24 = 6 Contoh 2 Tentukan FPB dari bilangan 75 dan 120 Faktor 75 = {1, 3, 5, 15, 25, 75} Faktor 120 = {1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60, 120} Faktor persekutuan dari 75 dan 120 = {1, 3, 4, 15} FPB dari 75 dan 120 = 15 Contoh 3 Tentukan FPB dari bilangan 36, 48 dan 72 Faktor 36 = {1, 2, 3, 4, 6, 9, 12, 18, 36} Faktor 48 = {1, 2, 3, 4, 6, 8, 12, 16,24, 48} Faktor 72 = {1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36, 72} Faktor persekutuan dari 36 dan 48 = {1, 2, 3, 4, 6, 12} FPB dari 36 dan 48 = 12 Menggunakan Pohon Faktor Buatlah pohon faktor dari kedua bilangan yang dicari FPB-nya. Tulis faktorisasi primanya. Pilihlah bilangan pokok yang sama pada kedua faktorisasi prima. Jika bilangan tersebut memiliki pangkat yang berbeda, ambillah bilangan prima dengan pangkat yang terendah. Contoh a. Tentukan FPB dari bilangan 20 dan 30 FPB = 2 X 5 = 10 2 dan 5 adalah bilangan prima yang sama-sama terdapat faktorisasi prima kedua pohon faktor. Pangkat terendah dari 2 adalah 1. Pangkat terendah dari 5 adalah 1. Maka FPB = 2 X 5 = 10 b. Tentukan FPB dari bilangan 48 dan 60 2 dan 3 adalah bilangan prima yang sama-sama terdapat faktorisasi prima kedua pohon faktor. Pangkat terendah dari 2 adalah 2. Pangkat terendah dari 3 adalah 1. Maka FPB = $latex 2^{2}$ X 3 = 12 c. Tentukan FPB dari bilangan 18, 30, dan 36 2 dan 3 adalah bilangan prima yang sama-sama terdapat faktorisasi prima ketiga pohon faktor. Pangkat terendah dari 2 adalah 1. Pangkat terendah dari 3 adalah 1. Maka FPB = 2 X 3 = 6 Menggunakan Tabel Buatlah cara tabel untuk mencari faktorisasi prima dari bilangan yang dicari FPB-nya. Beri tanda faktor prima yang sama. Contoh Tentukan FPB dari bilangan 21 dan 35 Tentukan FPB dari bilangan 36 dan 54 Tentukan FPB dari bilangan 75, 105 dan 120 KELIPATAN PERSEKUTUAN TERKECIL KPK KPK merupakan kelipatan paling kecil dari gabungan beberapa bilangan Cara mencari KPK Menggunakan Himpunan Kelipatan Persekutuan Contoh a. Tentukan KPK dari bilangan 8 dan 12 Kelipatan 8 = {8, 16, 24, 32, 40, 48, …} Kelipatan 12 = {21, 24, 36, 48, 60, 72, ….} Kelipatan persekutuan dari 8 dan 12 = { 24, 48, …} KPK dari 8 dan 12 = 24 b. Tentukan KPK dari bilangan 15 dan 20 Kelipatan 15 = {15, 30, 45, 60, 75, 90, 105, 120, …} Kelipatan 20 = {20, 40, 60, 80, 100,120, …} Kelipatan persekutuan dari 15 dan 20 = {60, 120, ….} KPK dari 15 dan 20 = 60 c. Tentukan KPK dari bilangan 6, 8 dan 10 Kelipatan 6 = {6, 12, 18, 24, 30, 36, 42, 48, …} Kelipatan 8 = {8, 16, 24, 32, 40, 48, …} Kelipatan 12 = {12, 24, 36, 48, 60, …} Kelipatan persekutuan dari 6, 8 dan 12 = {24, 48, …} KPK dari 6, 8 dan 12 = 24 Menggunakan Pohon Faktor Buatlah pohon faktor dari kedua bilangan yang dicari KPK-nya. Tulis faktorisasi primanya. Kalikan semua faktorisasi prima Jika satu bilangan terdapat di lebih dari satu pohon, ambillah bilangan dengan pangkat yang tertinggi. Contoh a. Tentukan KPK dari bilangan 10 dan 15 2, 3, dan 5 adalah faktor prima yang terdapat pada faktorisasi prima. Pangkat tertinggi 5 adalah 1 Maka KPK = 2 X 3 X 5 = 30 b. Tentukan KPK dari bilangan 12 dan 30 2, 3, dan 5 adalah faktor prima yang terdapat pada faktorisasi prima. Pangkat tertinggi 2 adalah 2. Pangkat tertinggi 3 adalah 1. Maka KPK = 22 X 3 X 5 = 60 c. Tentukan FPB dari bilangan 8, 24, dan 36 2 dan 3 adalah faktor prima yang terdapat pada faktorisasi prima. Pangkat tertinggi 2 adalah 3. Pangkat tertinggi 3 adalah 2. Maka KPK = $latex 2^{3} X 3^{2}$ = 72 Menggunakan Tabel Buatlah cara tabel untuk mencari faktorisasi prima dari bilangan yang dicari KPK-nya. Kalikan semua faktor prima. Contoh a. Tentukan KPK dari bilangan 16 dan 40 b. Tentukan KPK dari bilangan 36 dan 64 c. Tentukan KPK dari bilangan 10, 15 dan 25 saran dalam mencari FPB dan KPK lebih mudah menggunakan cara tabel Contoh Soal FPB dan KPK Doni mempunyai 20 butir kelereng merah, 28 butir kelereng putih, dan 36 butir kelereng biru. Kelereng tersebut dimasukkan ke dalam kantong dengan isi sama banyak. Berapa kantong yang diperlukan ? Berapa butir kelereng merah, kelereng putih, dan kelereng biru dalam satu kantong ? Penyelesaian FPB dari 20, 28, dan 36 FPB dari 20, 28, dan 36 = 2 X 2 = 4 Jadi jumlah kantong yang diperlukan = 4 kantong Isi tiap kantong Kelereng merah = 20 4 = 5 butir Kelereng putih = 28 4 = 7 butir Kelereng biru = 36 4 = 9 butir Pak Andi mendapat giliran ronda setiap 4 hari. Pak Karim mendapat giliran ronda setiap 6 hari. Pak Tedi mendapat giliran ronda setiap 8 hari. Setiap berapa hari mereka ronda bersama-sama ? Jika mereka ronda bersama-sama tanggal 1 Januari 2008, tanggal berapakah mereka ronda bersama-sama lagi ? Penyelesaian KPK dari 4, 6 dan 8 Jadi mereka ronda bersama-sama setiap 24 hari. Jika tanggal 1 Januari mereka ronda bersama-sama, maka tanggal 25 Januari mereka ronda bersama-sama lagi. SOAL LATIHAN FPB DAN KPK Carilah FPB dan KPK dari bilangan-bilangan berikut 21 dan 27 18 dan 48 10 dan 12 30 dan 42 60 dan 75 8, 16, dan 24 36, 54, dan 60 25, 35, dan 40 120, 150, dan 180 124, 160, dan 200 Ibu membeli 30 tangkai bunga mawar putih, 40 tangkai bunga mawar merah, dan 75 tangkai bunga mawar kuning. Ketiga bunga tersebut akan disimpan didalam vas dengan jumlah bunga yang sama. Berapa buah vas yang diperlukan ? Berapa banyak bunga mawar putih, mawar merah dan mawar kuning dalam setiap vas ? Ardi les bahasa Inggris setiap 3 hari. Lukman les bahasa Inggris setiap 4 hari. Kemal les bahasa Inggris setiap 6 hari. Jika mereka les bersama-sama pada tanggal 18 Juni, tanggal berapa mereka les bersama-sama lagi ? Soal bisa didownload di Soal Bilangan Bulat B2 Faktorisasi Persamaan Kuadrat Murni Faktorisasi persamaan kuadrat murni (Pure Quadratic) adalah metode alternatif yang dapat diterapkan untuk faktorisasi persamaan kuadrat murni.Persamaan ini ditandai dengan tidak adanya nilai konstanta c atau konstanta c = 0.Salah satu titik potong persamaan kuadrat murni akan memotong pusat koordinat kartesius di titik (0, 0). Sebelumnya Mafia Online sudah membahas cara menentukan faktor persekutuan terkecil FPB dengan mencari faktor dari masing-masing bilangan. Selain dengan cara tersebut, kita dapat menentukan FPB dari dua bilangan atau lebih dengan terlebih dahulu menentukan faktorisasi prima masing-masing bilangan itu. Di mana faktorisasi prima merupakan perkalian semua faktor-faktor prima dari suatu bilangan. Silahkan simak contoh soal berikut ini. “Tentukan FPB dari 72, 54 dan 36 dengan cara faktorisasi prima”. Hal pertama yang Anda lakukan adalah mencari faktorisasi prima dari ketiga bilangan tersebut yakni => 72 = 23 × 32 => 54 = 2 × 33 => 36 = 22 × 32 Faktor persekutuan terbesar FPB dari 72, 54 dan 36 diperoleh dengan mengalikan faktor dengan bilangan pokok yang sama, dengan pangkat terendah. Jadi, FPB dari 72, 54 dan 36 = 2 × 32 = 18. Dari uraian di atas dapat disimpulkan bahwa faktor persekutuan terbesar FPB dapat diperoleh dengan cara mengalikan faktor yang sama dengan pangkat terendah. Untuk memantapkan pemahaman Anda tentang cara menentukan faktor persekutuan terbesar FPB, silahkan simak contoh soal di bawah ini. ContohSoal 1 Tentukan FPB dari bilangan 46, 115, dan 230 dengan cara faktorisasi prima. Penyelesaian Faktorisasi prima 64 = 2 × 23 Faktorisasi prima 115 = 5 × 23 Faktorisasi prima 230 = 2 × 5 × 23 Jadi, FPB dari 46, 115 dan 230 = 23 ContohSoal 2 Tentukan FPB dari bilangan 54, 78, dan 100 dengan cara faktorisasi prima. Penyelesaian Faktorisasi prima 54 = 2 × 33 Faktorisasi prima 78 = 2 × 3 × 13 Faktorisasi prima 100 = 22 × 52 Jadi, FPB dari 54, 78, dan 100 = 2 ContohSoal 3 Tentukan FPB dari bilangan 24, 36, dan 72 dengan cara faktorisasi prima. Penyelesaian Faktorisasi prima 24 = 23 × 3 Faktorisasi prima 36 = 22 × 32 Faktorisasi prima 72 = 23 × 32 Jadi, FPB dari 24, 36, dan 72 = 22 × 3 = 12. Selain dengan cara di atas masih ada cara lain yakni dengan menggunakan pohon faktor dan akan dibahas pada postingan berikutnya. Demikian cara menentukan FPB dari dua atau lebih bilangan bulat. Mohon maaf jika ada kata atau perhitungan yang salah dalam postingan di atas. Salam Mafia => Kita pasti bisa. TOLONG DIBAGIKAN YA

5 tentukan fpb dari faktorisasi prima dua bilangan berikut! a. p=2²x3 b. r= 22 x 32 x 5 q = 2 x 32 s=22x3 c. t=2²x32x5 u= 2 x 3 x 5 kuis info kerjakan soal-soal berikut dengan teliti! 1. diketahui fpb dari 16 dan 20 adalah 4. tentukan kpk-nya! 2. diketahui kpk dan 30 dan 40 adalah 120. tentukan fpb-nya! 3. fpb dan kpk dari dua bilangan

PembahasanDiketahui faktorisasi prima dari bilangan R dan Sseperti berikut Ingat! "Melalui faktorisasi prima, FPB dapat ditentukan dengan mengalikan semua faktor prima yang sama dengan pangkat terkecil. Sehingga Jadi, FPB dari faktorisasi prima dua bilangan tersebut adalah 12Diketahui faktorisasi prima dari bilangan R dan S seperti berikut Ingat! "Melalui faktorisasi prima, FPB dapat ditentukan dengan mengalikan semua faktor prima yang sama dengan pangkat terkecil. Sehingga Jadi, FPB dari faktorisasi prima dua bilangan tersebut adalah 12 Dalammencari KPK dan FPB kita perlu memahami bilangan prima dan juga faktorisasi prima. Bilangan prima adalah bilangan yang pastinya juga sudah tidak asing lagi. Bilangan prima merupakan bilangan asli yang hanya mempunyai dua faktor, yakni bilangan itu sendiri dan 1. Beberapa contoh bilangan prima adalah 2, 3, 5, 7, 11, dan seterusnya.
BerandaTentukan FPBdari faktorisasi prima dua bilangan be...PertanyaanTentukan FPBdari faktorisasi prima dua bilangan berikut! b. R = 2 2 × 3 2 × 5 S = 2 2 × 3Tentukan FPB dari faktorisasi prima dua bilangan berikut! b. JawabanFPBdari faktorisasi prima tersebut adalah dari faktorisasi prima tersebut adalah menggunakan konsep FPBdari faktorisasi prima, maka didapatkan Jadi, FPBdari faktorisasi prima tersebut adalah menggunakan konsep FPB dari faktorisasi prima, maka didapatkan Jadi, FPB dari faktorisasi prima tersebut adalah 12. Perdalam pemahamanmu bersama Master Teacher di sesi Live Teaching, GRATIS!127Yuk, beri rating untuk berterima kasih pada penjawab soal!©2023 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia
Untukmenentukan FPB dari dua bilangan atau lebih, kita dapat menggunakan cara mendaftar, faktorisasi prima, dan sengkedan. Menentukan FPB dengan Faktorisasi Prima Misalkan kita akan menentukan FPB dari 140 dan 250. Pertama, kita tulis 140 dan 250 dalam perkalian faktor-faktor primanya. Perhatikan garis bilangan berikut! Dengan
Hai adik-adik kelas 4 SD, berikut ini Osnipa akan membahas materi mengenai Menentukan FPB dari Dua Bilangan. Semoga bermanfaat. Faktor Persekutuan Terbesar FPB Faktor Persekutuan Terbesar FPB dari dua atau lebih bilangan adalah faktor persekutuan dari bilangan-bilangan yang terbesar. Langkah mencari FPB dari dua bilangan Tentukan faktorisasi prima dari kedua bilangan dengan menggunakan pohon faktorFaktor prima yang sama dengan pangkat terkecil ContohTentukan FPB dari 4 dan 8 Pembahasan Faktorisasi prima 4 = 2 x 2 = 22Faktorisasi prima 8 = 2 x 2 x 2 = 23Jadi FPB dari 4 dan 8 adalah 22 Bagaimana anak hebat, apakah ananda sudah paham tentang FPB? Semoga ananda sudah memahaminya. Supaya ananda lebih memahaminya, kerjakan soal latihan berikut ini ya! 1. 12 dan 16 Pembahasan Faktorisasi prima 12 = 2 x 2 x 3 = 22 x 3Faktorisasi prima 16 = 2 x 2 x 2 x 2 = 24Jadi FPB dari 12 dan 16 adalah 22 = 4 2. 15 dan 18 Pembahasan Faktorisasi prima 15 = 3 x 5Faktorisasi prima 18 = 2 x 3 x 3 = 2 x 32Jadi FPB dari 15 dan 18 adalah 3 3. 18 dan 20 Pembahasan Faktorisasi prima 18 = 2 x 3 x 3 = 2 x 32Faktorisasi prima 20 = 2 x 2 x 5 = 22 x 5Jadi FPB dari 18 dan 20 adalah 2 4. 20 dan 36 Pembahasan Faktorisasi prima 20 = 2 x 2 x 5 = 22 x 5Faktorisasi prima 36 = 2 x 2 x 3 x 3 = 22 x 32Jadi FPB dari 20 dan 36 adalah 22 = 4 5. 24 dan 28 Pembahasan Faktorisasi prima 24 = 2 x 2 x 2 x 3 = 23 x 3Faktorisasi prima 28 = 2 x 2 x 7 = 22 x 7Jadi FPB dari 24 dan 28 adalah 22 = 4 Demikian pembahasan mengenai Menentukan FPB dari Dua Bilangan Kelas 4 SD. Semoga bermanfaat. Pengunjung 5,192
Lamab4 Carilah FPB dari pasangan bilangan 8 dan 18 dengan menentukan faktor bilangan dahulu l3yab 5 Tentukan FPB dari 20 dan 26 dawab. Tentukan 111 dari 4 dan 6 dengan menggunakan faktorisasi prima. Question from Aya1341 - Sekolah Dasar - Matematika. Sayangnya cara tersebut hanya mudah digunakan untuk angka kecil. Kelipatan 4 adalah 4 8 12 Faktorisasiprima: 2 dan 3 2. ! Faktorisasi prima dari 9.261 adalah 3 3 dan 7 3 maka hasilnya adalah 7 x 3 = 21. Faktorisasi prima dari 16 adalah 2 4 maka hasilnya adalah 2. Percobaan pembagian (Trial division): Algoritme yang lamban namun mudah dimengerti. Angka n yang perlu difaktorkan dibagi bulat dengan bilangan yang lebih besar dari 1 dan
Darifaktor prima di atas terdapat faktor yang sama bilangannya tapi beda pangkatnya, yaitu 2 5 dan 2 4. Faktor prima dengan pangkat terkecil adalah 2 4 . Jadi, FPBnya adalah 2 4 = 16. Jika ternyata tidak ada faktor prima yang sama dari dua atau lebih bilangan maka FPBnya sama dengan satu.
Faktorpersekutuan adalah faktor yang sama dari dua bilangan atau lebih. Baca juga: KUNCI Jawaban Tema 1 Kelas 3 SD/MI Halaman 175 Sampai 178, Belajar Perkembangbiakan dengan Spora *KPK dan FPB. KPK adalah nilai terkecil dari kelipatan persekutuan 2 atau lebih bilangan, sedangkan FPB adalah nilai terbesar dari faktor persekutuan 2 atau lebih C1vx29x.
  • oeccsi659e.pages.dev/68
  • oeccsi659e.pages.dev/857
  • oeccsi659e.pages.dev/119
  • oeccsi659e.pages.dev/880
  • oeccsi659e.pages.dev/308
  • oeccsi659e.pages.dev/811
  • oeccsi659e.pages.dev/743
  • oeccsi659e.pages.dev/616
  • tentukan fpb dari faktorisasi prima dua bilangan berikut